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Background: Digital phenotyping has been proposed as a novel 
assessment tool for clinical trials targeting negative symptoms 
in psychotic disorders (PDs). However, it is unclear which digital 
phenotyping measurements are most appropriate for this pur-
pose. Aims: Machine learning was used to address this gap in 
the literature and determine whether: (1) diagnostic status could 
be classified from digital phenotyping measures relevant to neg-
ative symptoms and (2) the 5 negative symptom domains (an-
hedonia, avolition, asociality, alogia, and blunted affect) were 
differentially classified by active and passive digital phenotyping 
variables. Methods: Participants included 52 outpatients with 
a PD and 55 healthy controls (CN) who completed 6 days of 
active (ecological momentary assessment surveys) and passive 
(geolocation, accelerometry) digital phenotyping data along 
with clinical ratings of negative symptoms. Results: Machine 
learning algorithms classifying the presence of a PD diagnosis 
yielded 80% accuracy for cross-validation in H2O AutoML and 
79% test accuracy in the Recursive Feature Elimination with 
Cross Validation feature selection model. Models classifying 
the presence vs absence of clinically significant elevations on 
each of the 5 negative symptom domains ranged in test accu-
racy from 73% to 91%. A few active and passive features were 
highly predictive of all 5 negative symptom domains; however, 
there were also unique predictors for each domain. Conclusions: 
These findings suggest that negative symptoms can be modeled 
from digital phenotyping data recorded in situ. Implications for 
selecting the most appropriate digital phenotyping variables for 
use as outcome measures in clinical trials targeting negative 
symptoms are discussed.
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Introduction

Psychotic disorders (PDs) are chronic and associated 
with profound functional impairment and disability.1–4 
Negative symptoms (ie, reductions in emotion, motiva-
tion, communication, and behavior) are a strong pre-
dictor of disability and poor functioning,5–7 highlighting 
their importance as a treatment target. Unfortunately, 
currently available pharmacological interventions have 
not been efficacious for remediating negative symptoms.8

Although contemporary clinical rating scales have al-
lowed for important advances in understanding the phe-
nomenology and etiology of  negative symptoms,9,10 the 
limitations associated with these measures, including 
social desirability, halo effects, and low resolution,11–16 
may make it difficult to observe robust treatment effects. 
Negative symptoms rating scales especially require con-
siderable integration of  both internal (ie, self-report) 
and behavioral symptom components across dynamic 
conditions such as time, environment, and activities. 
Failure to consider these fluctuations by using clinical 
rating scale items (eg, blunted affect across the past 
week) may lead to a misrepresentation of  treatment ef-
fects. Cognitive impairments present in PDs may also 
make it difficult to respond to the high recall demands 
of  negative symptom scales such as retrospectively re-
porting fluctuations in higher-order states like motiva-
tion and pleasure. Due to these challenges, there has 
been increasing interest in validating what appears to be 
the third generation of  negative symptom measurement: 
digital phenotyping (ie, using mobile devices to collect 
data in real-life).15,17–20 Digital phenotyping is commonly 
divided into active (ie, intentionally initiated by the par-
ticipant) and passive (ie, unobtrusively recorded via a 
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mobile device’s background sensors) measurements.18 
Several recent studies support the feasibility of  using 
active (eg, surveys, video recordings) and passive (eg, 
geolocation, accelerometry) digital phenotyping meas-
ures in PDs.11,16,19–26 However, the psychometric evidence 
to date has not crossed the threshold needed for these 
measures to be considered viable to use in clinical trials, 
and it is currently unclear which digital phenotyping 
measures might be the most appropriate outcome meas-
ures for studies targeting negative symptoms.

This study used machine learning to address these 
gaps in the literature and determine whether: (1) diag-
nostic status could be accurately predicted from dig-
ital phenotyping measures theoretically relevant to 
negative symptoms (ie, identifying whether the pres-
ence of  abnormality could be detected), (2) the pres-
ence (vs absence) of  clinically significant elevations in 
the 5 negative symptom domains (anhedonia, avolition, 
asociality, alogia, and blunted affect) could be differ-
entially modeled by unique active and passive digital 
phenotyping variables (ie, identifying whether specific 
measures hold relevance for individual domains or the 
broader negative symptom construct). A range of  digital 
phenotyping variables hypothesized to hold relevance 
for negative symptom assessment were entered into ma-
chine learning algorithms to determine which combin-
ations of  active and passive variables enhanced model 
metrics such as accuracy, precision, recall, and the area 
under the receiver operating characteristic curve (ROC 
AUC). A  comprehensive data analysis approach was 
utilized, which included multiple machine learning al-
gorithms, statistical tests, and a comparative approach 
to determine which classification tier individual digital 
phenotyping variables fell into. Based on prior digital 
phenotyping work,27 we hypothesized that multiple ac-
tive and passive variables would be identified as key fea-
tures in each evaluated model, and that models would 
provide cross-validation accuracies >80%.

Method

Participants

Participants included 52 outpatients with a PD and 55 
healthy controls (CN). These groups were matched on 
age, sex, parental education, or race; however, PD had 
lower personal education than CN. There was a trend to-
ward PD completing fewer EMA surveys than CN (see 
table 1).

PD was recruited from local community mental health 
centers and online or printed advertisements. Diagnoses 
were made using the Structured Clinical Interview for 
DSM-5 (SCID).28 CN were recruited from the local 
community using printed and online advertisements. 
CN had no current SCID-5 major psychiatric diag-
noses (eg, mood, substance use), no current SCID-PD29 
schizophrenia-spectrum personality disorders, no lifetime 
history of psychotic or bipolar disorders, no psychosis 
family history, and were not currently prescribed psycho-
tropic medications. All participants reported no lifetime 
neurological disorders. Participants provided written in-
formed consent for a protocol approved by the University 
of Georgia’s Institutional Review Board.

Procedures

Study procedures occurred in 3 phases.
Phase 1  Participants completed clinical interviews and 
received digital phenotyping training. Diagnostic and 
symptom interviews were conducted by a licensed clin-
ical psychologist or raters trained to reliability using 
gold-standard videos. PD outpatients were rated on 
the Brief  Negative Symptom Scale (BNSS),10 Positive 
and Negative Syndrome Scale (PANSS),30 and Level 
of Functioning Scale (LOF).31 Based on prior negative 
symptom theoretical conceptualizations and scale factor 
analyses,32–36 we used the BNSS to measure the 5 nega-
tive symptom domains (see supplementary table S1 for 
correlations between domains). Digital phenotyping 

Table 1.  Sample Characteristics

Variable PD (n = 52) CN (n = 55) Test Statistic P

Age, M (SD) 38.98 (11.97) 39.07 (10.62) F = 0 .966
Male, n (%) 18 (34.6%) 17 (30.9%) χ 2 = 0.17 .682
Personal education 13.21 (2.28) 15.4 (2.82) F = 19.37 <.001
Parental education 13.83 (2.9) 13.63 (2.85) F = 0.12 .731
Race χ 2 = 8.62 .125
  African American 17 (32.7%) 16 (29.1%)   
  Asian American 0 4 (7.3%)   
  Biracial 3 (5.8%) 3 (5.5%)   
  Caucasian 30 (57.7%) 24 (43.6%)   
  Hispanic/Latino 2 (3.8%) 6 (10.9%)   
  Other 0 2 (3.6)   
Survey adherence 57.85% (26.49%) 66.97% (23.76%) F = 3.52 .063

Note: CN, control group; PD, psychotic disorders group. PD group was composed of people with schizophrenia (n = 22), schizoaffective 
disorder (n = 27), and bipolar disorder with psychotic features (n = 3). Adherence is the percentage of surveys completed per day, out of 8.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
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Method

Participants

Participants included 52 outpatients with a PD and 55 
healthy controls (CN). These groups were matched on 
age, sex, parental education, or race; however, PD had 
lower personal education than CN. There was a trend to-
ward PD completing fewer EMA surveys than CN (see 
table 1).

PD was recruited from local community mental health 
centers and online or printed advertisements. Diagnoses 
were made using the Structured Clinical Interview for 
DSM-5 (SCID).28 CN were recruited from the local 
community using printed and online advertisements. 
CN had no current SCID-5 major psychiatric diag-
noses (eg, mood, substance use), no current SCID-PD29 
schizophrenia-spectrum personality disorders, no lifetime 
history of psychotic or bipolar disorders, no psychosis 
family history, and were not currently prescribed psycho-
tropic medications. All participants reported no lifetime 
neurological disorders. Participants provided written in-
formed consent for a protocol approved by the University 
of Georgia’s Institutional Review Board.

Procedures

Study procedures occurred in 3 phases.
Phase 1  Participants completed clinical interviews and 
received digital phenotyping training. Diagnostic and 
symptom interviews were conducted by a licensed clin-
ical psychologist or raters trained to reliability using 
gold-standard videos. PD outpatients were rated on 
the Brief  Negative Symptom Scale (BNSS),10 Positive 
and Negative Syndrome Scale (PANSS),30 and Level 
of Functioning Scale (LOF).31 Based on prior negative 
symptom theoretical conceptualizations and scale factor 
analyses,32–36 we used the BNSS to measure the 5 nega-
tive symptom domains (see supplementary table S1 for 
correlations between domains). Digital phenotyping 

training involved instruction in how to use an Embrace 
smartband, Android smartphone provided for data col-
lection, and mEMA app (www.ilumivu.com), including 
completing a practice survey in the app to ensure partici-
pant understanding of the EMA procedures.
Phase 2  Digital phenotyping data were collected for 
6 days. Surveys were presented via the mEMA app ran-
domly within 90-min epochs from 9 AM to 9 PM, aligning 
with prior EMA procedures.37,38 Surveys, prompted by a 
tone, were available for 15 min before becoming disabled. 
The time interval between surveys was at least 18 min and 
no more than 180 min. Only apps required for study pro-
cedures (eg, mEMA) were accessible to participants.

Surveys assessed multiple psychological processes (eg, 
emotional experience, emotion regulation). Only those 
germane to negative symptoms are described here (see 

Supplemental Materials for complete surveys). Following 
prior factor analytic work20 and BNSS procedures, sur-
veys included items to assess both internal experience 
and behavioral components of anhedonia, avolition, and 
asociality. Behavioral components were assessed from 
context reports related to engagement in recreational, 
work/school, self-care, and social activities. Internal ex-
perience components were assessed via questions related 
to enjoyment, interest, and motivation for the aforemen-
tioned activities (see table 2 for items). Given the critical 
role of defeatist performance beliefs (DPB) as a psycho-
logical process underlying negative symptoms,39–41 3 items 
(see table 2) were included to index this construct. These 
items were modified to a state format from the trait DPB 
scale.39 The items were developed in consultation with 
the DPB scale authors (AT Beck and PM Grant) who 

Table 2.  Ecological Momentary Assessment Survey Items and Description of Passive Digital Phenotyping Variables

Featurea Items

Defeatist performance beliefsb (DPB) I have to do well all the time or people will not respect 
me.  
If  you cannot do something well, there is little point in 
doing it.  
If  I fail at all, it is as bad as being a complete failure.

Anhedonia internal experienceb How much are you enjoying the activity?  
How much do you think you will enjoy that activity the 
next time you do it?  
How much are you enjoying this social interaction?  
How much do you think you will enjoy interacting with 
them next time?

Anhedonia behavior What are you doing right now?  
Recreation.

Avolition internal experience How interested are you in the activity?
Avolition behavior What are you doing right now?c  

Working/Studying, Errands/Housework, Exercising, 
Shopping, or Commuting/Traveling.

Asociality internal experience How interested are you in this social interaction?
Asociality behavior Who are you interacting with?c  

Significant other, Family/Roommates, or Friends.
Geolocation (GPS) distance from home Meters from home. Calculated using Haversine formula 

and Earth radius = 6 371 000.d

Geolocation (GPS) meters change Meters changed between samples, using Haversine 
formula.d

Home time Percentage of time spent within 200 m of home around 
each survey sample.

Accelerometry (ACL) mean Mean total acceleration across X, Y, and Z axes.d Cal-
culated as the sum of squares from each axis.

Accelerometry (ACL) standard deviation Standard deviation of the mean acceleration across X, 
Y, and Z axes within the 30 min of each survey sample.

Accelerometry activity index (ACL AI)e Activity index based on band accelerometry.d

Accelerometry Euclidean norm minus one (ACL ENMO)e Band accelerometry mean minus one.d

Note: BNSS, Brief  Negative Symptom Scale.
aAll items are scored such that higher values indicate higher severity—negative symptom items (anhedonia, avolition, and asociality) are 
all reverse scored. Our categorization of negative symptoms items was based on the theoretical framework and procedures of the BNSS 
and a prior confirmatory factor analysis of the items supporting this scoring.20

bAverage of items.
cIf  any item selected, 1, otherwise, 0.
dAveraged over 30 min around each survey.
eThese items were not included in the machine learning analyses due to too much missing data.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
http://www.ilumivu.com
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
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identified these items as most critical to the DPB con-
struct and processes underlying negative symptoms.

Passive digital phenotyping measures were collected 
from the smartphone (geolocation and accelerometry) 
and smartband (accelerometry). Table 2 contains the 
variables derived from these recordings.
Geolocation  Geolocation data were recorded every 
10  min or when participants moved more than 10 
m. Participants’ locations were also recorded when they 
completed a survey. Data were stored as GPS coordi-
nates and changes in meters from the previous sample. 
Distance from home was calculated at each sample as 
change in GPS coordinates from the participant’s home. 
Participant’s home location was determined as the mean 
percentage of samples corresponding to the participant’s 
home, as endorsed by the participant. Geolocation has 
demonstrated good reliability and moderate convergent 
validity with negative symptoms.20,22

Accelerometry  Phone sensors were programmed to 
collect accelerometry with each change in XYZ coordi-
nate motion (every accelerometry change being logged 
as a single instance), with separate value outputs for 
X, Y, and Z movement axes. The smartband collected 
accelerometry as gravitational force (g units) at a rate of 
32 Hz (range: −16 to 16 g). Measurements of average fre-
quency of movement, vigor of movement, and movement 
variability were calculated from smartband and phone 
accelerometry recordings using validated metrics42 (see 
table 2). Accelerometry has demonstrated good reliability 
and moderate convergent validity with clinically rated 
avolition.43

Phase 3  Participants completed cognitive and reward 
processing tests not considered in this manuscript. They 
also returned the smartphone, smartband, chargers, and 
received compensation consisting of $20 per h for com-
pleting interviews and tests and $1 per survey completed. 
An $80 bonus was provided for returning all equipment.

Data Analysis

Data Collection  Passive data (ie, geolocation, 
accelerometry) was averaged within the 30-min epoch 
around each active survey in order to pair passive and 
active data. Models only used complete data, where all 
active and passive variables of interest were present.
Machine Learning Models  The same analytic strategy 
(see figure  1) was implemented in group classification 
(CN vs PD, Aim 1) and the presence (vs absence) of the 
5 negative symptoms (Aim 2). Machine learning algo-
rithms for both Aims explored 12 digital phenotyping 
features relevant to negative symptoms (see table 2), with 
Aim 1 having 2340 data points and Aim 2 having 965 data 
points. There are fewer data points for Aim 2 because CN 
did not complete the BNSS. Six sets of supervised ma-
chine learning algorithms were examined, 1 set for Aim 1 
and 5 sets for Aim 2 (1 for each negative symptom), with 

each set comprising the same 6 feature selection methods 
and 3 statistical tests. Model performance for identified 
features was measured using 3 classifiers. The presence 
of a negative symptom was determined by a score of 2 
(mild) or higher on any BNSS item within a given do-
main: anhedonia (present/absent participants  =  30/23), 
avolition (33/2), asociality (28/25), blunted affect (27/26), 
and alogia (7/46).

Feature Selection  To examine which features were 
most consistently identified, we used a comprehen-
sive feature selection approach consisting of 6 ma-
chine learning methods (Boruta,44 Recursive Feature 
Elimination with Cross Validation (RFECV), Logistic 
Regression using Statsmodels,45 Random Forest, H2O,46 
and L1 Regularization) and 3 statistical tests (Chi Square, 
Kendall’s Rank Coefficient Method, and Select Percentile 
with ANOVA F-value). To identify feature importance in 
H2O AutoML, we used H2O XGBoost (eXtreme Gradient 
Boosting) and H2O GBM (Gradient Boosting Machine), 
which provided feature importance based on observed 
cross-validation accuracy and AUC.

Steps were taken to determine feature tiers. First, top 
tier features were identified by examining which features 
were ranked as most important in each feature selection 
method. To be determined top tier, a feature was required 
to be selected as the highest rank across most feature se-
lection methods and be statistically significant in at least 1 
statistical test. Features in the second and third tiers were 
identified by consistency of rankings across methods, se-
lection frequency, and statistical test significance; how-
ever, feature rankings were allowed to vary across feature 
selection methods. Features identified as second tier were 
selected more across ML methods than third tier features, 
which were mostly observed to be statistically significant 
and identified rarely across the feature selection methods.

Machine Learning Training and Evaluation Overview  We 
split the sample into a training and cross-validation 
dataset and test dataset. In both datasets, model perfor-
mance for subsets of consistently selected features was 
estimated using 3 learning classifiers (Random Forest, 
K-Nearest Neighbors [KNN], and Logistic Regression 
[this served as the baseline comparison model]).

Training and Cross-validation Dataset  Seventy-five 
percent of the data was used for training and val-
idation. We optimized classifiers by implementing 
Stratified K-folds Cross-validations and performing the 
RandomizedSearchCV technique to discover the optimal 
hyperparameters for all sets of classifiers in both aims. 
These procedures allow for an unbiased evaluation of 
model fit.

Test Dataset  The remaining 25% of data was used to 
evaluate tuned classifiers’ performance. Five classification 
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performance metrics were used to evaluate the fit of clas-
sifiers: (1) accuracy (most commonly used metric for 
evaluating machine learning models to check how often a 
classifier is correct), (2) precision (percentage of positive 
instances out of total predicted positive instances), (3) 

recall (or sensitivity; gives a true positive rate or a ratio 
of true positives to total actual positive instances), (4) 
ROC AUC prediction scores, and (5) confusion matrix 
(a summary table used to describe a classifier’s predictive 
results). Guided by prior work,27,47 values ≥.7 were used 

Fig. 1.  Digital Phenotyping Data Acquisition and Machine Learning Analysis Pipeline
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to indicate adequate fit for all classification performance 
metrics except for the confusion matrix, which was used 
to check a classifier’s prediction and error rates.

In both aims, the 5 classification performance metrics 
were used to: (1) identify the best fitting classifier and if  
KNN and Random Forest outperformed the baseline 
classifier model across 5 feature selection methods (H2O 
excluded), (2) determine ranks of feature importance 
by observing all model results, (3) examine how feature 
ranking changed when compared with the best model, 
and (4) check if  the top tier feature remained the same 
across all feature selection methods and if  new feature/s 
were included.

Model Comparison  We completed several steps to have 
the greatest likelihood of identifying key features rele-
vant to predicting diagnosis and the presence of negative 
symptom domains since individual models may produce 
varying results. To confirm that top tier features were 
indeed important features, classifier performance was 
also evaluated using only the top features. Performance 
metrics of these classifiers (with top feature/s only) were 
compared with the results of classifiers (with all relevant 
features), and comparable performance statistics were 
taken as indication that the top tier features were indeed 
important. Consistency across models was deemed to re-
flect a more stable estimate of feature importance.

Results

Digital Phenotyping Adherence

Survey adherence and passive data rates differed across 
diagnostic and negative symptom groups. PD and neg-
ative symptom present subgroups had less smartband 
accelerometry data than CN and PD without negative 
symptoms (see supplementary table S2).

Autocorrelations of  the digital phenotyping measures 
demonstrated expected variability of  these measures 
across the data collection period (see supplementary 
table S3).

Aim 1: Machine Learning Classification of 
Diagnostic Status

Feature selection methods identified a range of 2 
(Random Forest) to 7 (L1 Regularization) relevant fea-
tures in PD and CN groups. Random Forest classifier in 
RFECV method performed relatively well on test data 
when compared with the performance measures of other 
models. Random Forest classifier outperformed both 
KNN and Logistic Regression with above adequate per-
formance metrics. H2O XGBoost delivered the highest 
cross-validation accuracy and AUC (≥0.80) (see table 3).

The top tier/key features predicting PD diagnosis were 
DPB and geolocation home distance mean. Second tier 
features included avolitional behavior, anhedonia internal 

experience, asociality internal experience, and avolitional 
internal experience. The third tier feature was phone 
accelerometry standard deviation. Phone accelerometry 
mean did not meet any tier selection criteria (see table 4). 
Follow-up models entering only the top tier features con-
firmed the importance of the top tier variables, as per-
formance statistics did not change appreciably from the 
original model (see supplementary table S4).

Aim 2: Machine Learning Classification of the Presence 
of Individual Negative Symptoms

Feature selection methods for negative symptoms ranged 
from 4 (Random Forest) to 8 (Logistic Regression) fea-
tures in anhedonia, 3 (Logistic Regression) to 9 (RFECV) 
features in asociality, 2 (RFECV) to 7 (Random Forest) 
features in avolition, 3 (RFECV) to 8 (Boruta, Logistic 
Regression, L1 Regularization) features in blunted affect, 
and 4 (RFECV) to 8 (Boruta) features in alogia (see sup-
plementary table S5). Random Forest provided the best 
performance metrics amongst the 3 classifiers. Random 
Forest and KNN classifiers had better classification per-
formance metrics than Logistic Regression across all 
models. H2O XGBoost or H2O GBM in H2O AutoML 
delivered the highest cross-validation metrics for both ac-
curacy and AUC for each domain. The highest classifi-
cation performance metrics were estimated on test data 
by Random Forest classifier in Random Forest feature 
selection method in anhedonia, Random Forest classifier 
in RFECV and L1 Regularization in asociality, Random 
Forest classifier in Boruta in avolition, Random Forest 
classifier in RFECV in blunted affect, and Random 
Forest classifier in Boruta and Random Forest feature se-
lection methods in alogia. All of the best fitting BNSS 
domain models had adequate performance metrics (ex-
cept for recall in alogia).

To identify the optimal features, consistency of feature 
appearance was compared across all feature selection 
methods and statistical tests for each BNSS domain (see 
table 5). The optimal features for domains were:

1.	Anhedonia: top tier features were DPB and anhe-
donia internal experience; second tier features were 
geolocation home distance standard deviation, geo-
location home distance mean, phone accelerometry 
standard deviation, phone accelerometry mean, and 
avolition internal experience; and third tier features 
were asociality internal experience.

2.	Asociality: top tier features were phone accelerometry 
standard deviation, geolocation home distance mean, 
and DPB; second tier features were anhedonia internal 
experience, and phone accelerometry mean; and third 
tier features were geolocation home distance standard 
deviation, avolition internal experience, asociality in-
ternal experience, and geolocation meters change 
mean.

Table 3.  Machine Learning Results in Classifying Schizophrenia Diagnosis

Feature Selection Models Selected Features

Performance Measures

Classifiers RF LR KNN

Boruta DPB  
GPS home distance mean  
ACL mean  
ACL SD  
Anhedonia internal experience  
Avolition internal experience  
GPS home distance SD (occasionally 
identified)  
Asociality internal experience (occa-
sionally identified)

Accuracy 0.769 0.697 0.723
Precision 0.742 0.694 0.683
Recall 0.703 0.518 0.627
ROC_AUC 0.843 0.727 0.789
Confusion 
matrix

[275 61]  
[74 175]

[279 57]  
[120 129]

[270 71]  
[91 153]

RFECV DPB  
GPS home distance mean  
GPS home distance SD  
Anhedonia internal experience  
Avolition internal experience  
Asociality internal experience

Accuracy 0.79 0.696 0.72
Precision 0.774 0.69 0.684
Recall 0.715 0.518 0.635
ROC_AUC 0.86 0.725 0.79
Confusion 
matrix

[284 52]  
[71 178]

[278 58]  
[120 129]

[263 73]  
[91 158]

Logistic Regression using 
Statsmodels (P < .05)

DPB  
Avolition behavior  
GPS home distance mean  
ACL mean  
Asociality internal experience  
Anhedonia internal experience 
(P = .0508)

Accuracy 0.771 0.697 0.711
Precision 0.745 0.696 0.68
Recall 0.703 0.514 0.624
ROC_AUC 0.84 0.727 0.771
Confusion 
matrix

[276 60]  
[74 175]

[280 56]  
[121 128]

[260 75]  
[94 156]

Features
Feature  

Importance Classifiers RF LR KNN

Random Forest DPBa 0.277 Accuracy 0.747 0.699 0.718
GPS home distance 
meana

0.163 Precision 0.693 0.695 0.691

Anhedonia internal ex-
perience

0.076 Recall 0.732 0.522 0.616

Asociality internal ex-
perience

0.071 ROC_AUC 0.818 0.727 0.776

Avolition internal ex-
perience

0.07 Confusion 
matrix

[254 81]  
[67 183]

[279 57]  
[119 130]

[266 69]  
[96 154]

ACL SD 0.066
GPS home distance SD 0.065
ACL mean 0.065
GPS meters change SD 0.059
GPS meters change 
mean

0.058

Avolition behavior 0.018
Asociality behavior 0.012

Features
Scaled  

Importance Classifier H2O XGBoost

H2O AutoML DPB 1.000 Accuracy 0.796
GPS home distance 
mean

0.562 AUC 0.864

Anhedonia internal ex-
perience

0.329  

Asociality internal ex-
perience

0.275

Avolition internal ex-
perience

0.234

ACL SD 0.215
ACL mean 0.214
GPS home distance SD 0.116
Avolition behavior 0.074

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
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Table 3.  Machine Learning Results in Classifying Schizophrenia Diagnosis

Feature Selection Models Selected Features

Performance Measures

Classifiers RF LR KNN

Boruta DPB  
GPS home distance mean  
ACL mean  
ACL SD  
Anhedonia internal experience  
Avolition internal experience  
GPS home distance SD (occasionally 
identified)  
Asociality internal experience (occa-
sionally identified)

Accuracy 0.769 0.697 0.723
Precision 0.742 0.694 0.683
Recall 0.703 0.518 0.627
ROC_AUC 0.843 0.727 0.789
Confusion 
matrix

[275 61]  
[74 175]

[279 57]  
[120 129]

[270 71]  
[91 153]

RFECV DPB  
GPS home distance mean  
GPS home distance SD  
Anhedonia internal experience  
Avolition internal experience  
Asociality internal experience

Accuracy 0.79 0.696 0.72
Precision 0.774 0.69 0.684
Recall 0.715 0.518 0.635
ROC_AUC 0.86 0.725 0.79
Confusion 
matrix

[284 52]  
[71 178]

[278 58]  
[120 129]

[263 73]  
[91 158]

Logistic Regression using 
Statsmodels (P < .05)

DPB  
Avolition behavior  
GPS home distance mean  
ACL mean  
Asociality internal experience  
Anhedonia internal experience 
(P = .0508)

Accuracy 0.771 0.697 0.711
Precision 0.745 0.696 0.68
Recall 0.703 0.514 0.624
ROC_AUC 0.84 0.727 0.771
Confusion 
matrix

[276 60]  
[74 175]

[280 56]  
[121 128]

[260 75]  
[94 156]

Features
Feature  

Importance Classifiers RF LR KNN

Random Forest DPBa 0.277 Accuracy 0.747 0.699 0.718
GPS home distance 
meana

0.163 Precision 0.693 0.695 0.691

Anhedonia internal ex-
perience

0.076 Recall 0.732 0.522 0.616

Asociality internal ex-
perience

0.071 ROC_AUC 0.818 0.727 0.776

Avolition internal ex-
perience

0.07 Confusion 
matrix

[254 81]  
[67 183]

[279 57]  
[119 130]

[266 69]  
[96 154]

ACL SD 0.066
GPS home distance SD 0.065
ACL mean 0.065
GPS meters change SD 0.059
GPS meters change 
mean

0.058

Avolition behavior 0.018
Asociality behavior 0.012

Features
Scaled  

Importance Classifier H2O XGBoost

H2O AutoML DPB 1.000 Accuracy 0.796
GPS home distance 
mean

0.562 AUC 0.864

Anhedonia internal ex-
perience

0.329  

Asociality internal ex-
perience

0.275

Avolition internal ex-
perience

0.234

ACL SD 0.215
ACL mean 0.214
GPS home distance SD 0.116
Avolition behavior 0.074
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3.	Avolition: top tier features were geolocation home dis-
tance mean and DPB; second tier feature was phone 
accelerometry mean; and third tier features were 
asociality internal experience, phone accelerometry 
standard deviation, and anhedonia internal experi-
ence. Geolocation home distance standard deviation 
was rarely identified.

4.	Blunted affect: top tier features were DPB and geolo-
cation home distance mean; second tier features were 

geolocation meters change mean, phone accelerometry 
mean, phone accelerometry standard deviation, anhe-
donia internal experience, and avolition internal expe-
rience; and third tier features were asociality behavior 
and geolocation home distance standard deviation.

5.	Alogia: top tier features were DPB and geolocation 
home distance mean; second tier features were an-
hedonia internal experience, asociality internal ex-
perience, and avolition internal experience; and 
third tier features were avolition behavior and phone 
accelerometry mean.

Follow-up models entering only top tier features con-
firmed the importance of these features for each negative 
symptom domain since performance statistics were com-
parable to the original model (see supplementary table S6).

Discussion

This study used machine learning to determine which 
digital phenotyping variables are most relevant for clas-
sifying diagnostic status and the presence of clinically 
significant elevations in each of the 5 negative symptom 
domains: anhedonia, avolition, asociality, blunted affect, 
and alogia. A comprehensive machine learning approach 
was adopted to evaluate consistency of features identified 
and model performance across 6 feature selection models 
and 3 statistical tests. This approach allows for greater 
assurance that conclusions are not biased by particular 
models implemented. Several findings emerged that have 
important implications for selecting digital phenotyping 
measurements for negative symptom assessment.

Table 4.  Statistical Tests Results for Identifying Features 
Significance in Schizophrenia Diagnosis

Kendall’s Tau
Select Percentile With 
ANOVA F-Value

Selected Features P Selected Features P

DPB <.001 DPB <.001
Avolition behavior <.001 Avolition behavior <.001
GPS home dis-
tance mean

<.001 GPS home dis-
tance mean

<.001

Anhedonia in-
ternal experience

<.001 Avolition internal 
experience

<.001

Avolition internal 
experience

<.001 Anhedonia in-
ternal experience

<.001

ACL SD <.05 ACL SD <.05

The Chi Square test to determine statistical significance of cate-
gorical features only selected avolition behavior. Only ranking of 
anhedonia internal experience and avolition internal experience 
interchanged in statistical tests; rest of the features remained un-
changed. Note: ACL, accelerometry; DPB, defeatist performance 
beliefs.

Features
Scaled  

Importance Classifier H2O XGBoost

Asociality behavior 0.054
GPS meters change 
mean

0.053

GPS meters change SD 0.048

Features
Estimated 

Coefficients Classifiers RF LR KNN

L1 Regularization DPBa 0.805 Accuracy 0.762 0.696 0.723
Avolition behaviora −0.409 Precision 0.727 0.692 0.712
GPS home distance 
meana

−0.134 Recall 0.712 0.514 0.59

Asociality internal 
experiencea

−0.06 ROC_AUC 0.845 0.728 0.766

Anhedonia internal 
experiencea

0.032 Confusion 
matrix

[268 67]  
[72 178]

[279 57]  
[121 128]

[277 59]  
[103 146]

Avolition internal 
experiencea

0.016     

ACL SDa −0.001   

The value counts of classes ie, control and presence of group are 1339 and 1001. Best classifier(s) for model is bolded. Note: ACL, 
accelerometry; DPB, defeatist performance beliefs; KNN, K-Nearest Neighbors; LR, Logistic Regression; RF, Random Forest; ROC_
AUC, area under the receiver operating characteristic curve.
aFeatures were considered for estimating final fit of models.

Table 3.  Continued

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab134#supplementary-data
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First, a PD diagnosis was predicted with cross-
validation accuracy at ~80% and ~79% test accu-
racy using a combination of active and passive digital 
phenotyping measures. These rates are comparable to 
what has been observed in most other serious mental 
illness digital phenotyping machine learning studies.27 
These findings suggest that as a class of assessment tools, 
digital phenotyping is capable of detecting the presence 
of abnormalities in behaviors and experiences character-
istic of negative symptoms. Knowing that these measures 
can detect deficit states compared to a healthy group is 
an important first step before they can then be applied 
in studies only using clinical groups, such as pharmaceu-
tical trials. Given that both active and passive measures 
were identified as key features suggest that a combination 
of both data streams may be optimal. This level of ac-
curacy in diagnostic prediction is noteworthy given that 
only measures putatively relevant for negative symptoms 
were included, and negative symptoms can be observed 
in the general population; assessments of positive and 
disorganized symptoms, which are less common in the 
general population, were intentionally not incorporated 

to allow the hypotheses of interest to be tested. However, 
inclusion of such measures would likely further enhance 
model prediction.

Second, models classifying the presence of each of 
the 5 negative symptom domains varied in accuracy, 
precision, recall, ROC AUC, and confusion matrix. 
However, test accuracy was between 73% and 91% for 
the best models of individual domains. Observation of 
model performance at this level for blunted affect and 
alogia was surprising given that the variables examined 
(geolocation, accelerometry, and EMA surveys) prima-
rily align with anhedonia, avolition, and asociality, and 
there were no measures included that had face validity 
for measuring alogia or blunted affect. The model perfor-
mance achieved by alogia may reflect that this symptom 
is often a marker of illness severity and is typically only 
present in those with the most severe psychopathology. 
Notably, there were some variables that were predictive 
of all 5 domains, including DPB and geolocation home 
distance. The observation that defeatist beliefs were a 
top feature for each domain supports prior evidence that 
this construct is an important psychological mechanism 

Table 5.  Statistical Tests Results for Identifying Features Significance in Negative Symptom Domains

Feature 
Selection 
Methods

Negative Symptom Domains

Anhedonia Asociality Avolition Blunted Affect Alogia

Kendall’s 
Tau  
(P < .05)

DPB  
Anhedonia internal  
experience  
Avolition internal  
experience  
Asociality internal  
experience

ACL SD  
GPS home 
distance 
mean

GPS home  
distance mean  
ACL mean  
Anhedonia  
internal  
experience  
ACL SD  
Asociality  
internal  
experience  
DPB

DPB  
Asociality behavior  
Anhedonia internal  
experience  
ACL SD  
Avolition internal  
experience  
ACL mean  
Asociality internal  
experience

Anhedonia internal  
experience  
Asociality internal  
experience  
DPB  
Avolition internal  
experience  
GPS home distance mean  
Asociality behavior  
GPS home distance SD  
GPS meters change SD  
GPS meters change mean  
Avolition behavior

Select 
Percentile  
AVONA 
F-value  
(P < .05)

DPB  
Anhedonia internal  
experience  
Avolition internal  
experience  
GPS home distance SD  
Asociality internal  
experience

ACL SD  
GPS home 
distance 
mean

GPS home  
distance mean  
ACL mean  
ACL SD  
Anhedonia  
internal  
experience  
Asociality  
internal  
experience

DPB  
Asociality behavior  
ACL SD  
GPS home distance SD  
Anhedonia internal  
experience  
Avolition internal  
experience  
GPS home distance mean  
GPS meters change SD  
ACL mean  
GPS meters change mean  
Asociality internal  
experience

Anhedonia internal  
experience  
Asociality internal  
experience  
DPB  
Avolition internal  
experience  
Asociality behavior  
GPS home distance mean  
Avolition behavior

Note: ACL, accelerometry; DPB, defeatist performance beliefs. Chi Square test which was performed to determine statistical significance 
of categorical features, selected asociality behavior in blunted affect domain and both, avolition behavior and asociality behavior in 
alogia domain. In asociality, DPB was not statistically significant (P > .05). However, this feature was identified across most of the ML 
models and performance of random forest increased significantly after assessing metrics with DPB in top tier. Thus, it was included as a 
top tier feature.
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of negative symptoms, broadly defined.39–41 The relative 
importance of geolocation home distance across mul-
tiple negative symptom domains suggests that it may 
be the best global marker of negative symptoms among 
the passive variables. Both mean and standard deviation 
scores for home distance may also be worth computing. 
For anhedonia, avolition, and asociality, the experiential 
EMA items generally appeared in the higher tiers among 
selected features, suggesting that these items may hold 
value for assessing their intended constructs. However, 
the behavioral EMA survey items for these 3 domains 
were less likely to be selected as critical features. These 
behavioral items were taken from participant context 
reports (ie, who they were with [social], what they were 
doing [activity and location]). It is possible that this ap-
proach to assessing the behavioral components of these 
domains is not as robust as we anticipated. It may be 
more ideal to combine the experiential EMA items with 
objective behavioral markers from the passively recorded 
accelerometry or geolocation data than with behavioral 
EMA items. However, context may still be important to 
collect in EMA surveys, as it allows for a richer under-
standing of the passive data (eg, looking at geolocation 
only in certain contexts such as when participants are 
outside of their home).

Third, there may be unique combinations of active 
EMA surveys and passive measures that are optimal 
for anhedonia, avolition, and asociality. Based on the 
machine learning findings observed here and the face 
validity of these assessments, we have the following 
recommendations:

1.	For the avolition domain, the combination of avolition 
internal experience, geolocation home distance, and 
phone accelerometry mean measures may be ideal.

2.	The asociality domain may be best assessed via a 
combination of geolocation home distance, phone 
accelerometry standard deviation, and asociality expe-
riential EMA surveys.

3.	The anhedonia domain may be best assessed by geo-
location home distance mean and standard deviation, 
phone accelerometry mean and standard deviation, 
and anhedonia experiential EMA surveys measuring 
consummatory and anticipatory pleasure.

4.	Given that anhedonia, avolition, and asociality 
each have both experiential and behavioral compo-
nents,36 combining subjective and objective digital 
phenotyping measurements of negative symptoms 
may be necessary to assess the constructs as they are 
currently operationalized.

These findings can also inform measurement in negative 
symptom experimental psychopathology and clinical trial 
research. The comprehensive machine learning approach 
used here identified combinations of active and passive 
digital phenotyping variables relevant for predicting the 
presence of negative symptoms. The variables included in 

this study were not ideal for measuring alogia or blunted 
affect; however, measures such as ambulatory videos19 and 
passive vocal recording48 may hold promise for those con-
structs. Additional measures, especially those with less par-
ticipant burden than EMA, may also be worth exploring 
for avolition, anhedonia, and asociality, such as social 
media data, typing keystrokes, passive vocal recording, lin-
guistic text-message analysis, and ambulatory psychophys-
iology. Similarly, work is needed to more comprehensively 
examine the utility of adding within-person variability of 
these digital measures as negative symptoms markers. If  
negative symptoms can be quantified in real-world envir-
onments using digital phenotyping measurements, negative 
symptom studies might be able to be siteless in the future. 
This would be an enormous benefit in terms of practicality, 
cost, and participant burden. To determine whether digital 
phenotyping studies are ready for use specifically in clinical 
trials, larger-scale psychometric studies are needed to eval-
uate the reliability, validity, and sensitivity to change of a 
variety of these tools. There will undoubtedly be issues to 
work through, such as the appropriate level of resolution 
for each measure, how to pair active and passive variables, 
how to use survey context to inform passive measurement, 
ways to promote adherence, identifying the most appro-
priate analytic techniques and models, and data acqui-
sition, storage, and confidentiality. Such studies will be 
necessary to overcome limitations of the current study (eg, 
modest sample size, lack of a replication sample, limited 
range of passive measures, measurements focused on 3/5 
domains), which provides preliminary evidence suggesting 
that these digital phenotyping tools have promise for use 
in clinical trials.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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